
Network Information Filtering for Big Data:

a novel, fast, scalable and adaptive method

Tomaso Aste1,2, Guido Previde Massara1, Wolfram Barfuss1,3 Rodrigo Mazorra1

T. Di Matteo4

1 Department of Computer Science, University College London, Gower Street, London, WC1E 6BT,
UK.

2 Systemic Risk Centre, London School of Economics and Political Sciences, London, WC2A2AE, UK.
3 Department of Physics, University of Erlangen-Nuremberg, DE.

4 Department of Mathematics, King’s College London, The Strand, London, WC2R 2LS, UK.

Abstract

We propose a new network-filtering algorithm - named TMFG - that uses any arbitrary simi-
larity measure to gather complex, big dataset into a meaningful network structure that can be
used for clustering, community detection, modeling and databasing. The method is scalable to
very large datasets and it can take advantage of parallel and GPUs computing. The method
is adaptable allowing online updating and learning with continuous insertion and deletion of
new data as well as changes in the strength of the similarity measure. The approach con-
sists in building a triangulation that maximizes a gain function associated with the amount of
information retained by the network. We report applications to finance and big data analytics.
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1 Filtering information in big
data by using networks

We are witnessing interesting times rich of infor-
mation, readily available for us all. Using, under-
standing and filtering such information has become
a major activity across science, industry and so-
ciety at large. We need tools that can analyze
this information while it is generated and provid-
ing ways to reduce complexity and dimensional-
ity while keeping the integrity of the dataset. In-
formation content and flow are often associated
with large degrees of redundancy. Redundancy
is often used to convey strength to the meaning
or, more simply, it is the signal of recurring pat-
terns with high statistical significance and there-
fore important. In this presentation we propose to
use such redundancy to build an information-based
network that retains the relevant part of the data-
interdependency structure. The structure of this
network is a representation of the information in
the dataset and such information can be efficiently
analyzed by using network-theoretic tools.

The idea of using redundancy - namely corre-
lation coefficients - to filter information in large-
scale datasets by building networks of relevant links
has been very actively studied in the literature
mostly by means of two approaches: 1) the min-
imum spanning tree (MST) [1, 2] and 2) the pla-
nar maximally filtered graph (PMFG) [3, 4]. The
common idea underneath these two approaches is

to retain the largest and most significant possible
sub-graph while imposing global constraints on the
topology of the resulting network. In particular, in
the MST approach, the links with largest weights
are retained while constraining the sub-graph to be
globally a (spanning) tree. Similarly, in the PMFG
construction the largest weights are retained while
constraining the sub-graph to be globally a planar
graph. The PMFG has richer information content
than the MST with a larger number of edges (3N-6
instead of N-1, with N being the number of ver-
tices) and the presence of 3- and 4-cliques.

2 Planar Information Filter-
ing Graphs

PMFGs are powerful tools to study complex
datasets. For instance, it has been shown in [5]
that by making use of the 3-clique structure of
the PMFG a clustering can be extracted allow-
ing dimensionality reduction that keeps both local
information and global hierarchy in a determinis-
tic manner without the use of any prior informa-
tion. Applications to financial data-sets can mean-
ingfully identify industrial activities and structural
market changes [6] and can be used to diversify fi-
nancial risk by building a well-diversified portfolio
that effectively reduces investment risk. Specifi-
cally investments in stocks that occupy peripheral,
poorly connected regions in the financial filtered
networks are most successful in diversifying invest-
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Figure 1: Addition of one vertex in the deltahedron heuristic

reformulated by saying that, after T2, the face {v1, v2, v3} does not belong to
the basis any more, since it can be expressed as a combination of the other three
faces.

Algorithm 2: Deltahedron Heuristic

input : W— a correlation matrix
output: DH— a filtered version of W respecting the planarity constraint

1 VertexList List of vertices of W sorted in non-increasing order of
weight (sum or max) ;

2 n number of vertices in W ;
3 i 0 ;
4 while i  n do
5 Find in CurrentFaces the triangle whose vertices have the highest

correlation to VertexList (i) ;
6 Add VertexList (i) to DH;
7 Update CurrentFaces;
8 i i + 1 ;

9 end
10 return DH;

An extension to this method is suggested by Leung ( [?]) where vertex inser-
tion can happen one vertex at a time (as in Figure 1) or three vertices at a time
as in figure 2 below:
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Figure 2: Addition of three vertices in Leung’s extension of the deltahedron
heuristic
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Figure1: T2 move: addition of one vertex inside
a triangular face [8, 9].

ments even for small baskets of stocks [7].

However, the algorithm so far proposed to con-
struct the PMFG is numerically costly with O(N3)
computational complexity and cannot be applied
to large-scale data. Here we introduce a new al-
gorithm, the TMFG (Triangulated Maximally Fil-
tered Graph), that efficiently extracts a planar
subgraph which optimizes some objective func-
tion (which we shall call “gain function”). The
TMFG algorithm [10], outlaid below, starts from
a triangle and adds vertices inside triangles (lo-
cal move T2 [8, 9] see Fig.1). The novelty is
that, at each step, the algorithm optimizes a gain
function G(vk, {va, vb, vc}) that quantifies the gain
achievable by adding vertex vk inside the triangle
{va, vb, vc}.

Algorithm 3: TMFG algorithm

input : W — a similarity matrix
output: TMFG — a filtered version of W respecting the planarity constraint
/* Initialise a triangle t1 e.g. by using the highest W */

1 t1  Three vertices with highest W ;
2 VertexList List of vertices of W not belonging to t1 ;
3 Calculate Gains(VertexList, t1) ;
4 N  number of vertices in VertexList ;

/* Insert N � 3 vertices via T2 */
5 for n = 1 to N � 3 do
6 (vi, tabc) = argmax

vk,txyz

{Gains(vk, txyz)} ;

7 eliminate row Gains(vi, :) ;
8 eliminate column Gains(:, tabc) ;
9 ta1

, ta2
, ta3

 triangles created by the insertion of vi ;

10 update gain matrix Gains(:, ta1
), Gains(:, ta2

), Gains(:, ta3
) ;

/* Execute T1 */
11 Evaluate Gain by implementing T1 over ta1

, ta2
, ta3

and their neighbors and execute

T1 if net gain is positive ;
12 if T1 is executed then
13 Evaluate Gain by implementing T1 over modified triangles and their neighbors ;
14 end

15 end
16 return TMFG ;

The TMFG algorithm can be extended to include T1 moves as well (lines
12-15 in pseudocode Algorithm 3. In this case, the move is local to the plaquette
made by two joint triangles (i.e. {v1, v2, v3} and {v2, v3, v4} in Fig.3). The gain
function for a T1 move is associated to the removal of an edge (i.e. (v1, v3) in
Fig.3) and the simultaneous addition of another edge (i.e. (v2, v4) in Fig.3).
T1 moves can improve the gain after a vertex is inserted by locally switching
some edges. However, we have verified that this is –in practice– rarely the case
and for most practical cases the algorithm with T2 only is performing similarly.
In the following we will therefore consider separately the two cases of TMFG
constructed with and without T1.

One of the further advantages of this algorithm is that it can keep track of all
the 3- and 4-cliques at little numerical cost while it is generating the structure.

3.2 Parallelization and big data

Most of the operations in the TMFG construction are taking place locally within
3-cliques. If one introduces a criteria to assign a priori a list of disconnected
vertices to a certain number of seed-triangles then the TMFG can be carried
out completely independently for each of these local configurations. Only at
a final stage these seed-triangles (now 3-cliques containing planar graphs) can
be glued together making a connected TMFG. It is beyond the purpose of this
work to discuss in details the possible heuristics concerning e�cient assignments
of vertices to seeds triangles.

A logical issue to address in terms of ‘big data’ would be to limit the size of
the gain matrix. One possible way – in a massively parallel environment – would
be to subdivide the gain matrix among di↵erent processors as explained in the
next section. As the dimension of the problem grows, however, the dimension
of the gain table can be problematic as the number of elements is O(N2). A
possible solution could be to store only the highest gains in a sparse structure
and assign new nodes to cliques using only the gains above a certain threshold,
or maybe allowing only a given number of candidate sites per node. This would
make the size requirement of the gain table linear with the number of nodes.
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TMFG algorithm pseudocode [10].

The TMFG graph is very similar to the PMFG
and it can be successfully applied to the same do-
mains. For instance, an example of the use of the
TMFG to extract the industrial sectors structure
from correlations is reported in Fig.2, this is con-
sistent with the results in [6] obtained with the
PMFG. The advantage is that the TMFG algo-
rithm is much more efficient computationally. It
is scalable to very large datasets , given its lo-
cal nature, it is ideally suited for parallelisation.
The algorithm has the advantage of allowing ‘on-
line’ updates of the planar graphs through simple
local moves. It can be naturally applied to mul-
tipoint dependency measures taking advantage of
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Figure2: Example of TMFG built from cross-
correlations among daily log-returns of 342 US
stocks across a period of 15 years (1997-2012)
[6].

the 3- and 4-clique structure. Further, it is not re-
stricted to planar topologies allowing higher-genus
hyperbolic embeddings to be explored [3, 9]. Fi-
nally, another appealing advantage concerns graph-
ical modeling (e.g. Markov Random Fields) where
the structure of the network ensures that exact in-
ference algorithms can be performed in an efficient
fashion.
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